

VM062D

General Description

The VMO62D is a distributed amplifier designed on a 0.15µm pHEMT process. The device is capable of more than +22dBm of output power at saturation regime, up to 40GHz. And more than +16dBm of output power at 1dB of gain compression, up to 40GHz.

It provides 15dB of linear gain from DC to 40GHz, with an excellent group delay. The design has been optimized to provide high efficiency.

The supply current is as low as 180mA when operating with VD = +6V. The die include a 50Ω transmission line for calibration system.

Applications

Features

Distributed amplifier pHEMT GaAs MMIC				
Wide band	DC – 40GHz			
Flat group delay				
$50\Omega RF$ Single ended	$50\Omega RF$ Single ended RF input and output			
DC coupled in, DC coupled out				
P1dB	>+16dBm DC to 40GHz			
High output PSAT	>+22dBm DC to 40GHz			
Small signal gain	>15dB 2GHz to 40GHz			
Power supply	180mA @ +6V			
Chip size	2.27 x 1.574 x 0.1 (mm)			

- Wide Band MPA
- Radar / ECM / ECCM
- Test and measurement
- Telecommunications format NRZ, PAM4 56 GBPS
- Broadband / datalink communication

Pins Assignement & Functional Block Diagram

Function	Pin number
TL in	2
RF in	5
V _{G2}	7
Vd_load	8
RF out	10
TL out	13
Vg1_A	15
Vg1_b	16

• Electrical Specifications (Test Under Probes)

Test conditions: unless otherwise noted

- $T_{amb} = +25^{\circ}C$
- V_D = +6V
- I_D = 180mA
- V_{G2} = +2.5V

Symbol	Parameter	Min	Тур	Max	Unit
F	Frequency range	DC		40	GHz
G	Small signal gain		15		dB
ΔG	Small signal gain flatness		+/-0.5		dB
S11	Input return loss		-10		dB
S22	Output return loss		-13		dB
NF	Noise figure (@10GHz)			3	dB
P1dB	Output power @1dB compression	16	18		dBm
PSAT	Saturated output power		22		dBm
lo	Drain current		180		mA
VD	Drain supply voltage		6		V

• Environmental parameters

Symbol	Parameter	Min	Max	Unit
Тор	Operating temperature range	-40	+85	°C
Tstg	Storage temperature range	-55	+85	°C

Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VD	Drain bias voltage		9	V
V _{G2}	Gate control input access for second stage	-1	V _D /2	V
Pin	RF input power		18	dBm
Pcw	Continuous power dissipation (@85°)		2	W
Tprocess	Temperature process max 20 seconds		+325	°C

Operation of this device above any of these parameters may cause permanent damage.

• Typical Performance (Test Under Probes)

Test conditions: unless otherwise noted

- $T_{amb} = +25^{\circ}C$
- V_D = +6V
- ID = 180mA
- V_{G2} = +2.5V

Small Signal Gain vs Frequency

Input Return Loss vs Frequency

Noise Figure vs Frequency

Group Delay vs Frequency

Output Return Loss vs Frequency

OP1dB (dBm)

• Typical Performance (Test Under Probes)

Output P1dB vs Frequency

Test conditions: unless otherwise noted

- $T_{amb} = +25^{\circ}C$
- V_D = +6V
- I_D = 180mA
- V_{G2} = +2.5V

Saturated Output Power vs Frequency

Pout vs Pin vs Frequency

Gain vs Frequency vs Pin

ID vs Pin vs Frequency

Gain vs Pin vs Frequency

• Bias-up procedure

- 1. Apply $V_D = +6V$
- 2. Apply V_{G2} = +2.5V
- 3. Apply RF signal

Bias-down procedure

- 1. Turn off RF signal
- 2. Reduce V_{G2} to OV
- 3. Reduce V_D to OV

Access description

Pin number	Name	Description	Electrical interface
2	TL in	RF 50 Ω line input	→
5	RF in	RF Amplifier input, this access is DC coupled and internally matched to 50Ω .	
7	V _{G2}	Drain termination load decoupling access. This access must be connected to a MIM 100pF or 1000pF capacitor, with a low serial inductance bonding wire (the serial inductance impacts the Output return loss)	VD & P RF out
8	Vd_load	Drain termination load decoupling access. This access must be connected to a MIM 100pF or 1000pF capacitor, with a low serial inductance bonding wire (the serial inductance impacts the Output return loss)	
10	RF out	HF Amplifier output, this access is DC coupled and internally matched to 50Ω. It is also used to bias the drain current (I _D), by using a wide bandwidth external Bias-T structure.	- Gnd Gnd -
13	TL out	RF 50 Ω line output	→
15	VG _{1_A}	Gate control input access for first stage distributed amplifier structure. Unused for nominal biasing conditions.	Vg1_AVg1_B
16	VG _{1_B}	Gate control output access for first stage distributed amplifier structure. Unused for nominal biasing conditions.	0- <u>1</u> -0
Die Bottom	Gnd	Die must be connected to HF and DC Ground	

Die Layout & Pin Out

[•] Die size = 2270µm x 1574µm

- Die thickness = 100µm
- Die size tolerance = 50µm

x = 0µm y = 0µm

Pad number	Pad (Χ (μm)	c enter Υ (μm)	Size (μm x μm)	Name	Function
1	97	83	75 x 75	Gnd	
2	97	208	75 x 75	TLin	TL Input
3	97	333	75 x 75	Gnd	
4	97	572	100 x 100	Gnd	
5	97	722	100 x 100	RFin	RF Input
6	97	872	100 x 100	Gnd	
7	133	1478	100 x 100	V _{G2}	Gate Bias
8	313	1478	100 x 100	VD_LOAD	
9	2174	1296	100 x 100	Gnd	
10	2174	1146	100 x 100	RFout	RF Output
11	2174	996	100 x 100	Gnd	
12	2183	333	75 x 75	Gnd	
13	2183	208	75 x 75	TLout	TL Output
14	2183	83	75 x 75	Gnd	
15	841	517	100 x 100	V _{G1_A}	Gate Bias
16	350	517	100 x 100	V _{G1_B}	Gate Bias

• Die bottom must be connected to ground (RF and DC)

Application circuit

• C1 and C4 = 1µF

• C2 and C3 = 1nF capacitors are MIM type and must be placed as close as possible to the die access.

Typical Assembly Diagram

Ordering information

Product Code	Parameter
VM062D	DC to 40GHz 15dB Gain - 22dBm P _{SAT} Medium Power Amplifier

Associated Material

- Packaged die
- Die Evaluation Board (die EVB)
- Packaged die Evaluation Board (packaged die EVB)
- Mechanical files (DXF)
- Measurents files (S2P)

Product Compliance Information

Solderability

Use only AuSn (80/20) solder and limit exposure to temperature above 300 °C during 3-4 minutes, maximum.

ESD Sensitivy Rating

Test: Human Body Model (HBM) Std: JEDEC Standard JESD22-A114

RoHS-Compliance

This part is compliant with EU 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Other attributes

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

Contact information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Vectrawave.

vectrawave.com

+33 (0)2 57 63 00 20 sales@vectrawave.com

Vectrawave Device 5, rue de Louis de Broglie 22300 Lannion France

Informations contained in this document, are considered to be accurate and reliable. However, no responsibility is assumed by Vectrawave for the consequence of its use, nor for any infringement of patents or other rights of third parties that may result from this use. Products are not authorized for use in life support devices without prior written approval from Vectrawave. Specifications are subject to changewithout notice

